Structural

Science

ISSN 0108-7681

Thomas Reeswinkel, ${ }^{\text {a,b }}$ Sebastian Prinz, ${ }^{\text {a }}$ Karine M. Sparta ${ }^{\text {a }}$ and Georg Roth ${ }^{\text {a }}$

${ }^{\text {a }}$ Institut für Kristallographie der RWTH Aachen,

 Jägerstrasse 17-19, 52066 Aachen, Germany, and ${ }^{\mathbf{b}}$ Lehrstuhl für Werkstoffchemie der RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen, GermanyCorrespondence e-mail:
sparta@xtal.rwth-aachen.de
(C) 2007 International Union of Crystallography Printed in Singapore - all rights reserved

Synthesis and structural characterization of $\mathrm{BaV}_{4} \mathrm{O}_{9}$

The new spin $\frac{1}{2} V^{4+}$ barium oxovanadate $\mathrm{BaV}_{4} \mathrm{O}_{9}$ was synthesized and studied by means of single-crystal X-ray diffraction. Its room-temperature structure is monoclinic, space group $P 2 / c$. We discuss the temperature evolution of the crystal structure and thermal expansion tensor of the material between 293 and 100 K .

1. Introduction

Over the last three decades, low-dimensional spin $\frac{1}{2}$ materials have gained considerable importance in condensed matter science because of their exciting physical properties. These comprise, among others, high T_{c} superconductivity in twodimensional compounds (Bednorz \& Müller, 1986), spinPeierls transitions and the existence of a spin gap between a singlet ground state and an excited triplet state in onedimensional antiferromagnets, spin ladders and geometrically frustrated two-dimensional systems. In this context, copper(II) ($S=1 / 2$) compounds, such as CuGeO_{3} (Hase et al., 1993), $\mathrm{Sr}_{14} \mathrm{Cu}_{24} \mathrm{O}_{41}$ (Matsuda \& Katsumata, 1996), $\mathrm{SrCu}_{2} \mathrm{O}_{3}$ (Azuma et al., 1994) and $\mathrm{SrCu}_{2}\left(\mathrm{BO}_{3}\right)_{2}$ (Kageyama et al., 1999), have been thoroughly investigated. Among the vanadium(IV) compounds (also $S=1 / 2$), $\mathrm{CaV}_{4} \mathrm{O}_{9}$ was the first two-dimensional spin-gap system discovered (Bouloux \& Galy, 1973; Taniguchi et al., 1995). Since then, many other vanadium(IV) compounds were found to exhibit spin-gap behaviour, such as (VO) $2_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Johnston et al., 1987), the vanadate family $A \mathrm{~V}_{2} \mathrm{O}_{5}$ with $A=\mathrm{Li}, \mathrm{Na}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Ca}$ (Ueda, 1998), $\mathrm{Cs}_{2} \mathrm{~V}_{4} \mathrm{O}_{9}$ and $\mathrm{Rb}_{2} \mathrm{~V}_{4} \mathrm{O}_{9}$ (Liu \& Greedan, 1995) or $\mathrm{SrV}_{4} \mathrm{O}_{9}$ (Oka et al., 2000); these materials were mostly grown using temperatures between ca 1000 and 1500 K . However, barium vanadates containing V^{4+} ions have only been successfully synthesized recently, such as the V^{4+} compounds $\mathrm{Ba}_{2} \mathrm{VO}_{4}$ (Liu \& Greedan, 1993), $\mathrm{Ba}_{8} \mathrm{~V}_{7} \mathrm{O}_{22}$ (Liu \& Greedan, 1994a) and BaVO_{3} (Liu \& Greedan, 1994b), and the mixed-valence compounds $\mathrm{BaV}_{3} \mathrm{O}_{8}$ (Oka et al., 1995) and $\mathrm{BaV}_{7} \mathrm{O}_{16} \cdot n \mathrm{H}_{2} \mathrm{O}$ (Wang et al., 1998). The present work is part of a more general effort to grow new vanadium(IV) compounds under different experimental conditions, in our case with lower growth temperatures via a molten salt reaction route. We present the crystal growth and structure determination from single-crystal X-ray diffraction data of $\mathrm{BaV}_{4} \mathrm{O}_{9}$. Despite the chemical similarity with $\mathrm{CaV}_{4} \mathrm{O}_{9}$ and $\mathrm{SrV}_{4} \mathrm{O}_{9}$, this material exhibits a different, and to our knowledge, as yet unknown structure type. ${ }^{1}$

[^0]Received 8 December 2006
Accepted 23 January 2007

Table 1
Experimental and refinement details.
Full data can be obtained from the CIF file which has been deposited.

	293 K	250 K	200 K	150 K	100 K
Crystal data					
Chemical formula	$\mathrm{BaO}_{9} \mathrm{~V}_{4}$				
M_{r}	485.1	485.1	485.1	485.1	485.1
Cell setting, space group	Monoclinic, $P 12 / c 1$	Monoclinic, P12/c1	Monoclinic, P12/c1	Monoclinic, P12/c1	Monoclinic, P12/c1
Temperature (K)	293 (1)	250 (1)	200 (1)	150 (1)	100 (1)
$a, b, c(\AA)$	$\begin{aligned} & 7.6396(12), 4.9447(7), \\ & 9.3596(4) \end{aligned}$	$\begin{aligned} & 7.6303(12), 4.9405(7), \\ & 9.3547(14) \end{aligned}$	$\begin{aligned} & 7.6231(12), 4.9370(7), \\ & 9.3528(14) \end{aligned}$	$\begin{aligned} & 7.6140(12), 4.9319(7), \\ & 9.3470(14) \end{aligned}$	$\begin{aligned} & 7.6084(13), 4.9291(7), \\ & 9.3464(15) \end{aligned}$
$\beta\left({ }^{\circ}\right.$)	111.427 (11)	111.395 (11)	111.386 (11)	111.371 (11)	111.371 (12)
$V\left(\AA^{3}\right)$	329.13 (9)	328.35 (9)	327.76 (9)	326.86 (8)	326.41 (9)
Z	2	2	2	2	2
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	4.895	4.907	4.915	4.929	4.936
Radiation type	Mo $K \alpha$				
$\mu\left(\mathrm{mm}^{-1}\right)$	11.39	11.42	11.44	11.47	11.48
Crystal form, colour	Parallelepiped, dark blue				
Crystal size (mm)	$0.24 \times 0.21 \times 0.15$				
Data collection					
Diffractometer	Stoe IPDS 2				
Data collection method	Rotation, ω-scans				
Absorption correction	Numerical	Numerical	Numerical	Numerical	Numerical
$T_{\text {min }}$	0.09	0.09	0.09	0.09	0.09
$T_{\text {max }}$	0.19	0.19	0.19	0.19	0.19
No. of measured, independent and observed reflections	5391, 1132, 1031	5369, 1125, 1025	5359, 1122, 1025	5337, 1119, 1021	5334, 1119, 1027
Criterion for observed reflections	$I>2 \sigma(I)$				
$R_{\text {int }}$	0.045	0.044	0.043	0.042	0.038
$\theta_{\text {max }}\left({ }^{\circ}\right)$	32.17	32.17	32.17	32.17	32.17
Refinement					
Refinement on	F^{2}	F^{2}	F^{2}	F^{2}	F^{2}
$\begin{aligned} & R\left[F^{2}>2 \sigma\left(F^{2}\right)\right] \\ & \quad w R\left(F^{2}\right), S \end{aligned}$	0.023, 0.040, 1.45	0.022, 0.038, 1.41	0.022, 0.038, 1.46	0.020, 0.036, 1.38	0.021, 0.035, 1.46
No. of reflections	1132	1125	1122	1119	1119
No. of parameters	66	66	66	66	66
H -atom treatment Weighting scheme	No H atoms present $\begin{gathered} w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\right. \\ \left.(0.010 P)^{2}\right], \text { where } \\ P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{gathered}$	No H atoms present $\begin{gathered} w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\right. \\ \left.\quad(0.010 P)^{2}\right], \text { where } \\ P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{gathered}$	No H atoms present $\begin{gathered} w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\right. \\ \left.(0.010 P)^{2}\right], \text { where } \\ P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{gathered}$	No H atoms present $\begin{gathered} w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\right. \\ \left.(0.010 P)^{2}\right], \text { where } \\ P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{gathered}$	No H atoms present $\begin{gathered} w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\right. \\ \left.(0.010 P)^{2}\right], \text { where } \\ P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{gathered}$
$(\Delta / \sigma)_{\max } \quad \AA^{-3}$	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.80, -0.88	0.72, -0.76	0.83, -0.77	0.69, -0.78	0.77, -0.81
Extinction method	SHELXL	SHELXL	SHELXL	SHELXL	SHELXL
Extinction coefficient	0.0104 (5)	0.0087 (7)	0.0077 (6)	0.0078 (7)	0.0084 (7)

2. Experimental

2.1. Crystal growth

$\mathrm{BaV}_{4} \mathrm{O}_{9}$ single crystals were grown by a flux method. A salt mixture of $\mathrm{LiCl}, \mathrm{RbCl}$ and BaCl_{2} was first prepared by drying the components separately at 413 K and mixing them in the molar ratio 2:1:1. VO_{2} powder was then added to the mixture in the flux: VO_{2} mass ratio 10:1. The mixture was ground in an agate mortar, placed in an $\mathrm{Al}_{2} \mathrm{O}_{3}$ crucible and dried again because of the hygroscopic properties of BaCl_{2}. The crucible was then placed into a glass test tube, which was kept open and placed in a glass gas-washing bottle. The sample was heattreated at 713 K for 24 d in a vertical tube furnace and then slowly cooled down to room temperature. During the growth process, argon gas (Ar 5.0) was flushed through the bottle to
keep oxygen away and thus avoid the oxidation of the V^{4+} ions to the non-magnetic V^{5+} ions. Among the crystallized flux material, which also precipitated on the inner side of the test tube, small dark blue $\mathrm{BaV}_{4} \mathrm{O}_{9}$ single crystals could be found and isolated.

2.2. Single-crystal X-ray diffraction

Temperature-dependent single-crystal X-ray diffraction measurements were performed on a two-circle imaging plate diffractometer (Stoe-IPDS-II, Mo $K \alpha$ radiation, tube setting 50 kV and 25 mA , pyrolytic graphite monochromator). The diffractometer was equipped with a Cryostream cryogenic N_{2} gas blower ($80-300 \mathrm{~K}$, accuracy 0.1 K). Five data sets (completeness $>97 \%$) were collected at 293, 250, 200, 150 and

Table 2
$\mathrm{BaV}_{4} \mathrm{O}_{9}$: environment of the V atoms (293 K).

V1-O2	1.7209 (19)	$\mathrm{O} 4^{\mathrm{i}}-\mathrm{V} 1-\mathrm{O} 2$	102.18 (9)
V1-O4 ${ }^{\text {i }}$	1.9206 (20)	$\mathrm{O} 3-\mathrm{V} 1-\mathrm{O} 2$	95.44 (9)
V1-O3	1.9791 (18)	$\mathrm{O} 5-\mathrm{V} 1-\mathrm{O} 2$	98.69 (7)
V1-O5	1.9932 (14)	$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{V} 1-\mathrm{O} 2$	88.67 (9)
$\mathrm{V} 1-\mathrm{O} 3^{\text {ii }}$	2.0345 (20)	$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{V} 1-\mathrm{O} 2$	174.18 (9)
$\mathrm{V} 1-\mathrm{O} 4^{\text {ii }}$	2.0743 (19)	$\mathrm{O} 3-\mathrm{V} 1-\mathrm{O} 4^{\text {i }}$	94.97 (8)
$\mathrm{V} 1-\mathrm{V} 2^{\text {i }}$	2.8120 (7)	$\mathrm{O} 5-\mathrm{V} 1-\mathrm{O} 4^{\text {i }}$	85.45 (9)
$\mathrm{V} 1-\mathrm{V} 1^{\text {ii }}$	2.9870 (9)	$\mathrm{O}^{3 i}-\mathrm{V} 1-\mathrm{O} 4^{\mathrm{i}}$	169.15 (8)
V1-V2	2.9882 (7)	$\mathrm{O} 4^{\mathrm{ii}}-\mathrm{V} 1-\mathrm{O} 4^{\mathrm{i}}$	82.58 (8)
V1-V1 ${ }^{\text {v }}$	3.0035 (9)	$\mathrm{O} 5-\mathrm{V} 1-\mathrm{O} 3$	165.46 (6)
$\mathrm{V} 1-\mathrm{V} 2^{\text {ii }}$	3.2050 (7)	$\mathrm{O} 3 \mathrm{ii}-\mathrm{V} 1-\mathrm{O} 3$	83.83 (8)
V1-V1 ${ }^{\text {vi }}$	3.5038 (11)	$\mathrm{O} 4 \mathrm{ii}-\mathrm{V} 1-\mathrm{O} 3$	80.71 (8)
$\mathrm{V} 1-\mathrm{V} 2^{\text {vii }}$	3.5107 (8)	$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{V} 1-\mathrm{O} 5$	93.02 (8)
$\mathrm{V} 1-\mathrm{V} 2^{\text {viii }}$	3.6613 (8)	$\mathrm{O} 4^{\mathrm{ii}}-\mathrm{V} 1-\mathrm{O} 5$	84.94 (6)
$\mathrm{V} 1-\mathrm{V} 2^{\text {vi }}$	3.7984 (8)	$\mathrm{O}^{3 i}-\mathrm{V} 1-\mathrm{O} 4^{\mathrm{i}}$	86.59 (8)
V2-O1	1.6188 (21)	$\mathrm{O} 4-\mathrm{V} 2-\mathrm{O} 1$	106.40 (10)
V2-O4	1.9521 (18)	$\mathrm{O} 2-\mathrm{V} 2-\mathrm{O} 1$	97.03 (10)
V2-O2	1.9781 (21)	$\mathrm{O} 5^{\text {iii }}-\mathrm{V} 2-\mathrm{O} 1$	108.83 (10)
V2-O5 ${ }^{\text {iii }}$	1.9968 (20)	$\mathrm{O}^{\text {iv- }}-\mathrm{V} 2-\mathrm{O} 1$	101.07 (9)
$\mathrm{V} 2-\mathrm{O}^{\text {iv }}$	2.0084 (19)	$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{V} 2-\mathrm{O} 1$	172.76 (10)
$\mathrm{V} 2-\mathrm{O} 3^{\text {ii }}$	2.2765 (19)	$\mathrm{O} 2-\mathrm{V} 2-\mathrm{O} 4$	90.11 (8)
$\mathrm{V} 2-\mathrm{V} 2^{\text {vi }}$	2.8108 (10)	$\mathrm{O}{ }^{\text {iii }}-\mathrm{V} 2-\mathrm{O} 4$	84.53 (6)
V2-V1iii	2.8120 (7)	$\mathrm{O}^{3 \mathrm{iv}}-\mathrm{V} 2-\mathrm{O} 4$	152.45 (8)
V2-V1	2.9882 (7)	$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{V} 2-\mathrm{O} 4$	76.34 (7)
$\mathrm{V} 2-\mathrm{V} 1^{\text {ii }}$	3.2050 (7)	$\mathrm{O} 5^{\text {iii }}-\mathrm{V} 2-\mathrm{O} 2$	154.08 (8)
$\mathrm{V} 2-\mathrm{V} 1^{\text {iv }}$	3.5107 (8)	$\mathrm{O}^{3 \mathrm{iv}}-\mathrm{V} 2-\mathrm{O} 2$	88.67 (8)
$\mathrm{V} 2-\mathrm{V} 1^{\text {ix }}$	3.6613 (8)	$\mathrm{O} 3^{\mathrm{ii}}-\mathrm{V} 2-\mathrm{O} 2$	76.14 (7)
$\mathrm{V} 2-\mathrm{V} 1^{\text {vi }}$	3.7984 (8)	$\mathrm{O}^{3 \mathrm{iv}}-\mathrm{V} 2-\mathrm{O} 5^{\text {iii }}$	84.64 (7)
		$\mathrm{O}^{3 i}-\mathrm{V} 2-\mathrm{O} 5{ }^{\text {iii }}$	77.95 (7)
		$\mathrm{O}^{\text {iii }}-\mathrm{V} 2-\mathrm{O}^{\text {iv }}$	76.65 (8)

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1,-y+1,-z+1$; (iii) $x, y+1, z$; (iv) $x,-y+1, z-\frac{1}{2}$; (v) $x, y-1, z$; (vi) $-x+1, y,-z+\frac{1}{2}$; (vii) $x,-y+1, z+\frac{1}{2}$; (viii) $-x+1, y-1,-z+\frac{1}{2} ;($ ix $)-x+1, y+1,-z+\frac{1}{2}$.

100 K . For each temperature, the data were collected with a crystal-detector distance of 8 cm , an exposure time of 4 min per frame, an ω scan between 0 and 180° for $\varphi=0^{\circ}$ and an ω scan between 0 and 90° for $\varphi=70^{\circ}$, with the rotation step $\Delta \omega=1.5^{\circ}$ per frame. The lattice parameters and the intensities of the reflections were obtained with the program X AREA (Stoe \& Cie, 2002). Numerical absorption corrections via symmetry equivalents were performed using the programs $X-R E D$ and X-SHAPE (Stoe \& Cie, 1996). The roomtemperature structure was solved using direct methods with the program SIR2002 (Burla et al., 2003). The refinements were performed with the program SHELXL97 (Sheldrick, 1997), as implemented in the program suite $\operatorname{Win} G X$, Version 1.64.05 (Farrugia, 1999). Details are summarized in Table 1. The monoclinic thermal expansion coefficients were calculated from the fitted temperature dependences of the cell parameters with a locally written Fortran program.

3. Results

3.1. Room-temperature structure of $\mathrm{BaV}_{\mathbf{4}} \mathrm{O}_{\mathbf{9}}$

$\mathrm{BaV}_{4} \mathrm{O}_{9}$ was found to crystallize in the monoclinic space group $P 2 / c$ (No. 13), with the room-temperature cell parameters $a=7.6396$ (12), $b=4.9447$ (7), $c=9.3596$ (14) \AA and $\beta=111.427$ (11) .

The structure of $\mathrm{BaV}_{4} \mathrm{O}_{9}$ consists of corrugated $\mathrm{V}_{4} \mathrm{O}_{9}$ zigzag layers separated by Ba^{2+} ions (Fig. 1). The Ba^{2+} ions, located on the twofold rotation axes at $\left(0, y, \frac{1}{4}\right)$, are 12 -fold coordinated by O atoms and form slightly distorted BaO_{12} anticuboctahedra, with $\mathrm{Ba}-\mathrm{O}$ distances ranging between 2.750 (2) and 3.225 (2) \AA. The V^{4+} ions occupy two nonequivalent general positions. Their coordination polyhedra are distorted VO_{6} octahedra, with distinctly different distortions and linkages to each other (Table 2, Fig. 2): The $\mathrm{V1O}_{6}$ octahedra share edges with other $\mathrm{V} 1 \mathrm{O}_{6}$ and $\mathrm{V} 2 \mathrm{O}_{6}$ octahedra to form $\mathrm{V}_{4} \mathrm{O}_{12}$ double chains along the b direction; these chains are in turn linked via face-sharing $\mathrm{V} 2 \mathrm{O}_{6}$ octahedra to form the $\mathrm{V}_{4} \mathrm{O}_{9}$ layers. The O atoms occupy general positions, except for the O 5 atom, lying on the twofold rotation axis at $\left(\frac{1}{2}, y, \frac{1}{4}\right)$.

The shortest bond of the $\mathrm{V} 1 \mathrm{O}_{6}$ octahedron, $\mathrm{V} 1-\mathrm{O} 2$, is not a typical vanadyl bond: The O 2 atom belongs both to the ${\mathrm{V} 1 \mathrm{O}_{6}}$ and $\mathrm{V} 2 \mathrm{O}_{6}$ octahedra. The opposite trans (apex) $\mathrm{V} 1-$ $\mathrm{O} 4^{\text {ii }}$ bond is not much longer than the cis (equatorial) $\mathrm{V} 1-\mathrm{O}$ bonds; within the equatorial plane, we observe that the cis $\mathrm{V} 1-\mathrm{O} 4^{\mathrm{i}}$ bond is significantly smaller than the other three. The $\mathrm{V} 1^{4+}$ ion and the $\mathrm{O} 2, \mathrm{O} 4^{\mathrm{i}}$ apex atoms are roughly aligned in the ($a b$) plane and the $\mathrm{O} 2-\mathrm{V} 1-\mathrm{O} 4$ direction forms an angle of $25.0(1)^{\circ}$ with a. The $\mathrm{V} 1^{4+}$ ion does not exactly lie at the centre of the octahedron in the equatorial plane, but is slightly displaced towards the apex and cis ligands O 2 and $\mathrm{O} 4^{i}$. Since the only cation neighbour of the O 1 atom is $\mathrm{V} 2^{4+}$, the $\mathrm{V} 2-\mathrm{O} 1$ vanadyl bond of the $\mathrm{V} 2 \mathrm{O}_{6}$ octahedron is much closer to the usually measured value of $1.59 \AA$ (Schindler et al., 2000) and as a consequence, the trans $\mathrm{V} 2-\mathrm{O} 3^{\mathrm{ii}}$ bond is longer. This

Figure 1
Room-temperature structure of $\mathrm{BaV}_{4} \mathrm{O}_{9}$. (a) Projection onto the ac plane. The VO_{6} octahedra are represented in grey and the Ba^{2+} ions by the white spheres separating the layers. (b) Projection of a $\mathrm{V}_{4} \mathrm{O}_{12}$ chain (parallel to the b direction) onto the plane containing \mathbf{b} and [101]. The arrows point to the face-sharing $\mathrm{V2O}_{6}$ octahedra linking two $\mathrm{V}_{4} \mathrm{O}_{12}$ chains. See the caption to Table 2 for the symmetry codes.
octahedron also possesses a smaller $\mathrm{V} 2-\mathrm{O} 4$ cis equatorial bond length compared with the other three. The $\mathrm{V} 2^{4+}$ ion lies closer to the centre of the pyramid formed by the vanadyl and equatorial ligands than to the centre of the octahedron; however, the bond valence attached to the trans $\mathrm{V} 2-\mathrm{O} 3^{\mathrm{ii}}$ bond is not negligible and justifies considering $\mathrm{O}^{\text {ii }}$ as the sixth ligand of V 2 . The vanadyl and trans bonds of the $\mathrm{V} 2 \mathrm{O}_{6}$ octahedron are almost parallel to the direction formed by the trans bonds of the $\mathrm{V1O}_{6}$ octahedron.

The $\mathrm{V}_{4} \mathrm{O}_{9}$ zigzag layers can be described as consisting of $\mathrm{V}_{4} \mathrm{O}_{12}$ double chains parallel to b, where the $\mathrm{V1O}_{6}$ octahedra share equatorial edges with other $\mathrm{V1O}_{6}$ octahedra and nonequatorial edges with the $\mathrm{V} 2 \mathrm{O}_{6}$ octahedra (Fig. 1b). Within such a chain, the V^{4+} ions form quasi-equilateral triangles, with the angles $\mathrm{V} 1-\mathrm{V} 2-\mathrm{V} 1^{\mathrm{ii}}=57.55(2)^{\circ}, \mathrm{V} 2-\mathrm{V} 1^{\mathrm{ii}}-\mathrm{V} 1=$ $57.58(2)^{\circ}$ and $\mathrm{V} 1^{\mathrm{ii}}-\mathrm{V} 1-\mathrm{V} 2=64.87(2)^{\circ}$, so that unless there exist some relatively strong magnetic interactions between the double chains, frustration should play an important role in the properties of $\mathrm{BaV}_{4} \mathrm{O}_{9}$. It should be noted that an inversion center lies between V1 and V1 ${ }^{\text {ii }}$ and thus no DzyaloshinskyMoriya interaction can exist between these two ions (Dzyaloshinsky, 1958; Moriya, 1960). The $\mathrm{V}_{4} \mathrm{O}_{12}$ chains are linked to each other via face-sharing $\mathrm{V} 2 \mathrm{O}_{6}$ octahedra: The environments of the $\mathrm{V} 1^{4+}$ and V^{4+} ions are quantitatively very different. The distinction between the two V sites is also seen by considering the possible $\mathrm{V}^{4+}-\mathrm{V}^{4+}$ magnetic interactions within a $\mathrm{V}_{4} \mathrm{O}_{9}$ layer: The $\mathrm{V} 2^{4+}$ ion possesses fewer vanadium neighbours than $\mathrm{V} 1^{4+}$ (Table 2, Fig. 3). It is noteworthy that although the V^{4+} sublattice resembles a $1 / 5$-depleted trian-

Figure 2
Room-temperature structure of $\mathrm{BaV}_{4} \mathrm{O}_{9}$: Environments of the V1 and V2 atoms. See caption of Table 2 for the symmetry codes.

Figure 3
Projection of a corrugated $\mathrm{V}_{4} \mathrm{O}_{9}$ layer onto the $b c$ plane (left) and onto the ac plane (right). The light grey spheres represent the $\mathrm{V} 1^{4+}$ ions and the dark grey spheres the V^{4+} ions. The O atoms have been omitted for clarity. See Table 2 for the symmetry codes.
gular framework, the vacant site between two $\mathrm{V} 1^{4+}$ cations is too small $\left[\mathrm{V} 1-\mathrm{V} 1^{\mathrm{vi}}=3.5038(11) \AA\right.$] to accommodate an additional V^{4+} cation.

Although the chemical formula of the title compound is reminiscent of $\mathrm{CaV}_{4} \mathrm{O}_{9}$ and the metastable phase $\mathrm{SrV}_{4} \mathrm{O}_{9}$, its crystal structure is very different. Both $\mathrm{CaV}_{4} \mathrm{O}_{9}$ and $\mathrm{SrV}_{4} \mathrm{O}_{9}$ crystallize in the tetragonal space group $P 4 / n$ (No. 85) and consist of edge-sharing VO_{5} tetragonal pyramids, alternately pointing up and down the c direction, forming flat layers separated by the eightfold-coordinated alkaline earth ions. The V^{4+} ions lie on equivalent positions. In the neighbourhood of a VO_{5} pyramid, there are no further O atoms opposite the vanadyl bond that could be considered as part of an elongated VO_{6} octahedron. The coordination polyhedron of the Ca^{2+} (or Sr^{2+}) ion is a tetragonal antiprism. Within the $\mathrm{V}_{4} \mathrm{O}_{9}$ layers, the V^{4+} ions form a $1 / 5$-depleted Heisenberg square checkerboard lattice and both materials are spin-gap systems. Thus, consid-

Figure 4
Temperature (K)
Temperature dependence of the cell parameters and volume of $\mathrm{BaV}_{4} \mathrm{O}_{9}$, obtained from single-crystal X-ray diffraction experiments. The linear fits for a, b, c and V and the second-order polynomial fit for β are guides to the eye.
ering the local geometries of the atomic coordinations as well as the linkage of the coordination polyhedra, the crystal structures of $\mathrm{CaV}_{4} \mathrm{O}_{9}$ and $\mathrm{BaV}_{4} \mathrm{O}_{9}$ are fundamentally unrelated to each other.

Figure 5
Evolution of the $\mathrm{V}-\mathrm{O}$ bond lengths and some selected $\mathrm{O}-\mathrm{V}-\mathrm{O}$ bond angles as a function of temperature. The fits are used as guides to the eye. See caption of Table 2 for the symmetry codes.

3.2. Temperature-dependent evolution of $\mathrm{BaV}_{4} \mathrm{O}_{9}$

From room temperature down to 100 K , no evidence for a structural phase transition was observed (Fig. 4). The principal changes within the $\mathrm{V1O}_{6}$ octahedron concern the $\mathrm{O}-\mathrm{V} 1-\mathrm{O}$ bond angles: except for the cis $\mathrm{V} 1-\mathrm{O} 5$ bond, which increases slightly with increasing temperature, the lengths of the V1-O bonds remain constant within 3σ over the whole temperature range (Fig. 5). The three shortest bond lengths of the $\mathrm{V} 2 \mathrm{O}_{6}$ octahedron also remain constant within 3σ, but we observe quite large variations in the larger distances. In particular, the $\mathrm{V} 2-\mathrm{O} 3^{\mathrm{iv}}$ and $\mathrm{V} 2-\mathrm{O} 5^{\mathrm{iii}}$ cis bonds have comparable lengths at room temperature, but evolve linearly in opposite ways down to 100 K , thus distorting the equatorial plane of the octahedron.

The temperature dependences of the shortest $\mathrm{V}^{4+}-\mathrm{V}^{4+}$ distances seem at first rather complicated (Fig. 6). The V1$\mathrm{V} 1^{\mathrm{V}}$ and $\mathrm{V} 1-\mathrm{V} 2$ distances increase linearly with increasing temperature, with slopes of $2.5(2) \times 10^{-5}$ and $1.7(2) \times$ $10^{-5} \AA \mathrm{~K}^{-1}$, respectively. The $\mathrm{V} 1-\mathrm{V} 2^{\mathrm{i}}$ and $\mathrm{V} 2-\mathrm{V} 2^{\mathrm{vi}}$ distances do not follow a linear trend, but increase quadratically, the absolute change in the $\mathrm{V} 1-\mathrm{V} 2^{\mathrm{i}}$ distance being almost three times larger than for $\mathrm{V} 2-\mathrm{V} 2{ }^{\mathrm{vi}}$. On the other hand, $\mathrm{V} 1-\mathrm{V} 1^{\mathrm{ii}}$ drastically decreases from 100 K , where it is longer than the $\mathrm{V} 1-\mathrm{V} 1^{\mathrm{v}}$ distance, up to 293 K where it becomes shorter than the V1-V2 distance.

These distances can generally be divided into three groups. The linearly increasing $\mathrm{V} 1-\mathrm{V} 1{ }^{\mathrm{v}}$ and $\mathrm{V} 1-\mathrm{V} 2$ distances form an almost straight line more or less in the direction of the $\mathrm{V}_{4} \mathrm{O}_{12}$ double chains, with a $\mathrm{V} 1^{\mathrm{v}}-\mathrm{V} 1-\mathrm{V} 2$ angle of 174.31 (2) ${ }^{\circ}$ at 100 K and $175.40(3)^{\circ}$ at 293 K . The $\mathrm{V} 1-\mathrm{V} 1^{\mathrm{ii}}$ and $\mathrm{V} 1-\mathrm{V} 2^{\mathrm{i}}$

Figure 6
Evolution of the shortest $\mathrm{V}^{4+}-\mathrm{V}^{4+}$ distances as a function of temperature. The fits are used as guides to the eye. See caption of Table 2 for the symmetry codes.

Table 3
Top: coefficients $\alpha_{i j}\left(10^{-6} \mathrm{~K}^{-1}\right)$ of the thermal expansion tensor of $\mathrm{BaV}_{4} \mathrm{O}_{9}$; bottom: eigenvalues α_{1} and α_{3} in $10^{-6} \mathrm{~K}^{-1}\left(\alpha_{2}=\alpha_{22}\right)$ and angles between the eigenvectors $\boldsymbol{a}_{1}, \boldsymbol{\alpha}_{3}$ of the thermal expansion tensor of $\mathrm{BaV}_{4} \mathrm{O}_{9}$ and the orthogonal crystal axes $\mathbf{a}^{*}, \mathbf{b}$ and \mathbf{c}.

$\Delta T(\mathrm{~K})$	α_{11}	α_{22}	α_{33}	α_{13}
$293-250$	$21(1)$	$16(1)$	$7(1)$	$-7.2(8)$
$250-200$	$19(1)$	$16(1)$	$7(1)$	$-5.8(8)$
$200-150$	$18(1)$	$16(1)$	$7(1)$	$-4.3(8)$
$150-100$	$17(1)$	$16(1)$	$7(1)$	$-2.8(8)$

			Eigenvector angles $\left({ }^{\circ}\right)$		
$\Delta T(\mathrm{~K})$	\boldsymbol{a}_{i}	α_{i}	$\angle\left(\boldsymbol{a}_{i}, \boldsymbol{a}^{*}\right)$	$\angle\left(\boldsymbol{a}_{i}, \boldsymbol{b}\right)$	$\angle\left(\boldsymbol{a}_{i}, \boldsymbol{c}\right)$
$293-250$	\boldsymbol{a}_{1}	$4(1)$	$62(3)$	90	$28(3)$
	\boldsymbol{a}_{3}	$21(1)$	$152(3)$	90	$62(3)$
$250-200$	\boldsymbol{a}_{1}	$5(1)$	$67(3)$	90	$23(3)$
	\boldsymbol{a}_{3}	$21(1)$	$157(3)$	90	$67(3)$
$200-150$	\boldsymbol{a}_{1}	$6(1)$	$72(3)$	90	$18(3)$
	\boldsymbol{a}_{3}	$21(1)$	$162(3)$	90	$72(3)$
$150-100$	\boldsymbol{a}_{1}	$7(1)$	$79(3)$	90	$11(3)$
	\boldsymbol{a}_{3}	$21(1)$	$169(3)$	90	$79(3)$

distances, behaving quadratically with temperature, form the second pair along the direction of the chain, with a V1ii $-\mathrm{V} 1-$ $\mathrm{V} 2^{\mathrm{i}}$ angle of $176.09(3)^{\circ}$ at 100 K and $176.72(3)^{\circ}$ at 293 K . Since V1-V1 ${ }^{\text {ii }}$ decreases more slowly than V1 $-\mathrm{V} 2^{\mathrm{i}}$ increases, the whole chain is denser along the b direction at lower temperatures. Thirdly, we have the short $\mathrm{V} 2-\mathrm{V} 2^{\text {vi }}$ distance involved in the face-sharing $\mathrm{V} 2 \mathrm{O}_{6}$ octahedra, linking two $\mathrm{V}_{4} \mathrm{O}_{12}$ double chains. Also represented in Fig. 3 is the larger $\mathrm{V} 1-\mathrm{V} 2^{\mathrm{ii}}$ distance, which points perpendicular to the chains and increases slightly with increasing temperature.
The temperature dependences of the $\mathrm{V}^{4+}-\mathrm{V}^{4+}$ distances probably arise from the combination of thermal expansion and magnetic interactions, and are related to the changes in the VO_{6} octahedra. The ${\mathrm{V} 1 \mathrm{O}_{6}}$ and $\mathrm{V} 1{ }^{\mathrm{ii}} \mathrm{O}_{6}$ octahedra share edges via the O 3 and O^{ii} atoms; the non-linear decrease of the $\mathrm{V} 1-\mathrm{V} 1^{\mathrm{ii}}$ distance is explained by or explains the linear increase of the cis-cis $\mathrm{O} 3-\mathrm{V} 1-\mathrm{O} 3^{\mathrm{ii}}$ bond angle (bottom part of Fig. 5), which further shears the equatorial plane of the $\mathrm{V1O}_{6}$ octahedron at lower temperatures. Similarly, the increase of the $\mathrm{V} 1-\mathrm{V} 1^{\mathrm{v}}$ distance is related to the decrease of the cis-trans $\mathrm{O} 4^{\mathrm{i}}-\mathrm{V} 1-\mathrm{O} 4^{\mathrm{ii}}$ bond angle. The $\mathrm{V}_{1} \mathrm{O}_{6}$ and $\mathrm{V}^{\mathrm{i}} \mathrm{O}_{6}$ octahedra share edges via the $\mathrm{O} 4^{\mathrm{i}}$ and O 5 atoms: The nonlinear increase of the $\mathrm{V} 1-\mathrm{V} 2^{\mathrm{i}}$ distance with increasing temperature coincides with the simultaneous decreases in the cis-cis $\mathrm{O} 4^{\mathrm{i}}-\mathrm{V} 1-\mathrm{O} 5$ and cis-cis $\mathrm{O} 4-\mathrm{V} 2-\mathrm{O} 5^{\mathrm{iii}}$ bond angles. In the case of the face-sharing $\mathrm{V} 2 \mathrm{O}_{6}$ and $\mathrm{V}_{2}{ }^{\text {vi }} \mathrm{O}_{6}$ octahedra, the increase of the $\mathrm{V} 2-\mathrm{V} 2^{\mathrm{vi}}$ distance is better understood by considering the temperature dependence of the $\mathrm{V} 2-\mathrm{O}$ bond lengths. Owing to the twofold rotation axis at $\left(\frac{1}{2}, y, \frac{1}{4}\right)$ between V 2 and $\mathrm{V} 2{ }^{\mathrm{vi}}$, the variations of the trans $\mathrm{V} 2-\mathrm{O} 3{ }^{\mathrm{ii}}$ and cis $\mathrm{V} 2-$ $\mathrm{O} 3^{\text {iv }}$ bond lengths compensate each other and only the increasing cis $\mathrm{V} 2-\mathrm{O} 5^{\text {iii }}$ bond length has an influence on the $\mathrm{V} 2-\mathrm{V} 2^{\mathrm{vi}}$ distance.

3.3. Thermal expansion tensor

The cell parameters a, b and c decrease linearly with temperature, the highest absolute change being observed along the a direction (Fig. 4). The Lagrangian components of the thermal expansion tensor $\alpha_{11}, \alpha_{22}, \alpha_{33}$ and α_{13} were obtained for the conventional orthonormal basis $e_{3}\left\|c, e_{2}\right\| b^{*}$ and $e_{1} \| e_{2} \times e_{3}$ (i.e. $e_{3}\left\|c, e_{2}\right\| b$ and $e_{1} \| a^{*}$ for a monoclinic system) using the following relationships (Knight et al., 1999), with linear functions for a, b, c and a second-order polynomial function for β

$$
\begin{aligned}
\alpha_{11}(T)= & \frac{1}{a_{0} \sin \beta_{0}}\left(\sin \beta \frac{\mathrm{~d} a}{\mathrm{~d} T}+a \cos \beta \frac{\mathrm{~d} \beta}{\mathrm{~d} T}\right) \\
\alpha_{22}(T)= & \frac{1}{b_{0}} \frac{\mathrm{~d} b}{\mathrm{~d} T} \\
\alpha_{33}(T)= & \frac{1}{c_{0}} \frac{\mathrm{~d} c}{\mathrm{~d} T} \\
\alpha_{13}(T)= & \frac{1}{a_{0}} \frac{\mathrm{~d} a}{\mathrm{~d} T}\left(\frac{1}{\sin 2 \beta_{0}}-\frac{\sin \beta}{2 \cos \beta_{0}}\right) \\
& -\frac{a \cos \beta}{2 a_{0} \cos \beta_{0}} \frac{\mathrm{~d} \beta}{\mathrm{~d} T}-\frac{\cot \beta_{0}}{2 c_{0}} \frac{\mathrm{~d} c}{\mathrm{~d} T} .
\end{aligned}
$$

In each temperature range, all the three principal components of the thermal expansion tensor are positive (Table 3): The representation quadric is a triaxial ellipsoid. We observe that the ratio between the smallest and largest eigenvalues (α_{1} and α_{3}, respectively) decreases slightly with temperature, but the anisotropy of the tensor remains very pronounced. As the temperature decreases, the eigenvectors α_{1} and α_{3} of the $\left[\alpha_{i j}\right]$ tensor tend to become parallel to \mathbf{c} and the reciprocal vector \mathbf{a}^{*}, respectively (Fig. 7), while the α_{13} component decreases. However, this behavior is not accompanied by a decrease of the β monoclinic angle towards 90°, so the possibility of a simultaneous phase transition towards an orthorhombic phase

Temperature-dependent rotation of the eigenvectors \boldsymbol{e}_{1} and \boldsymbol{e}_{3} of the thermal expansion tensor of $\mathrm{BaV}_{4} \mathrm{O}_{9}$: projection of the ellipsoid onto the $a c$ plane. The grey ellipse represents the room-temperature tensor and the black ellipse the low-temperature tensor (125 K).
is ruled out. Instead, the rotation of the principal axes of the thermal expansion tensor directly reflects the change in the anisotropy of the anharmonicity within the crystal upon cooling. No obvious relationship between the temperature dependence of the crystal structure of $\mathrm{BaV}_{4} \mathrm{O}_{9}$ and the evolution of the thermal expansion tensor could be found.

4. Conclusions

We have synthesized a new compound in the $\mathrm{Ba}-\mathrm{V}-\mathrm{O}$ system, chemically similar to $\mathrm{CaV}_{4} \mathrm{O}_{9}$ and $\mathrm{SrV}_{4} \mathrm{O}_{9}$, but with a novel layered structure. Further preparative work is in progress to synthesize enough material for magnetic measurements.

References

Azuma, M., Hiroi, Z., Takano, M., Ishida, K. \& Kitaoka, Y. (1994). Phys. Rev. Lett. 73, 3463-3466.
Bednorz, J. G. \& Müller, K. A. (1986). Z. Phys. B Condens. Matter, 64, 189-193.
Bouloux, J.-C. \& Galy, J. (1973). Acta Cryst. B29, 1335-1338.
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
Dzyaloshinsky, I. (1958). J. Phys. Chem. Solids, 4, 241-255.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hase, M., Terasaki, I. \& Uchinokura, K. (1993). Phys. Rev. Lett. 70, 3651-3654.

Johnston, D. C., Johnson, J. W., Goshorn, D. P. \& Jacobson, A. J. (1987). Phys. Rev. B, 35, 219-222.

Kageyama, H., Yoshimura, K., Stern, R., Mushnikov, N. V., Onizuka, K., Kato, M., Kosuge, K., Slichter, C. P., Goto, T. \& Ueda, Y. (1999). Phys. Rev. Lett. 82, 3168-3171.
Knight, K. S., Stretton, I. C. \& Schofield, P. F. (1999). Phys. Chem. Miner. 26, 477-483.
Liu, G. \& Greedan, J. E. (1993). J. Solid State Chem. 103, 228-239.
Liu, G. \& Greedan, J. E. (1994a). J. Solid State Chem. 108, 371-380.
Liu, G. \& Greedan, J. E. (1994b). J. Solid State Chem. 110, 274 289.

Liu, G. \& Greedan, J. E. (1995). J. Solid State Chem. 115, 174-186.
Matsuda, M. \& Katsumata, K. (1996). Phys. Rev. B, 53, 12201-12205.
Moriya, T. (1960). Phys. Rev. 120, 91-98.
Oka, Y., Yao, T. \& Yamamoto, N. (1995). J. Solid State Chem. 117, 407-411.
Oka, Y., Yao, T., Yamamoto, N., Ueda, M. \& Maegawa, S. (2000). J. Solid State Chem. 149, 414-418.
Schindler, M., Hawthorne, F. C. \& Baur, W. H. (2000). Chem. Mater. 12, 1248-1259.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1996). X-SHAPE and X-RED. Stoe and Cie GesmbH, Germany.
Stoe \& Cie (2002). X-AREA. Stoe and Cie GesmbH, Germany.
Taniguchi, S., Nishikawa, T., Yasui, Y., Kobayashi, Y., Sato, M., Nishioka, T., Kontani, M. \& Sano, K. (1995). J. Phys. Soc. Jpn, 64, 2758-2761.
Ueda, Y. (1998). Chem. Mater. 10, 2653-2664.
Wang, X., Liu, L., Bontchev, R. \& Jacobson, A. J. (1998). Chem. Commun. pp. 1009-1010.

[^0]: ${ }^{1}$ Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM5044). Services for accessing these data are described at the back of the journal.

